Optimal Recovery and n-Widths for Convex Classes of Functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities of Ando's Type for $n$-convex Functions

By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.

متن کامل

Classes of Convex Functions

We investigate a family that connects various subclasses of functions convex in the unit disk. We also look at generalized sequences for this family.

متن کامل

The Infinite-Dimensional Widths and Optimal Recovery of Generalized Besov Classes

The purpose of the present paper is to consider some weak asymptotic problems concerning the infinite-dimensional Kolmogorov widths, the infinite-dimensional linear widths, the infinite-dimensional Gel’fand widths and optimal recovery in Besov space. It is obvious to be found that the results obtained and methods used in Besov space are easily generalized, and hence in this paper these results ...

متن کامل

Optimal recovery of isotropic classes of twice-differentiable multivariate functions

Keywords: Optimal recovery of functions Worst-case error Class of twice-differentiable functions Optimal covering a b s t r a c t We consider the class of functions defined on a convex body in R d , d ∈ N, whose second derivatives in any direction are uniformly bounded and the class of d-variate functions periodic with respect to a given full-rank lattice L and having uniformly bounded second d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1995

ISSN: 0021-9045

DOI: 10.1006/jath.1995.1025